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We have studied the phase dynamics in an oscillatory chemical system (Belousov-Zhabotinsky reaction).
The phase distribution and isophase lines in the 2D phase space were reconstructed. The dynamics proved
to be well described in terms of the Burgers equation. The phase dependence of the coefficients of the
equation was taken into account to estimate the region of the applicability of the Burgers equation.

1. Introduction

The description in terms of a nonlinear phase diffusion
equation1 allows one to understand the basic features of the
dynamics of oscillatory chemical systems. Particularly, this
approach was recently applied to the Belousov-Zhabotinsky
(BZ) reaction to study phase waves and dephasing waves2,3 and
a phase rotor.4-6

Conventionally, the nonlinear phase diffusion equation1

describes the instantaneous frequency of oscillations∂φ/∂t as a
sum of three terms: the frequency of bulk oscillationsω0, a
diffusion-like term proportional to the Laplacian of phase∇2φ,
and a term proportional to the squared gradient of phase|∇φ|2.
The equation equivalent to eq 1 is known in physics as the
Burgers equation.
The coefficientsD andA are usually assumed to be constants.

Their values for the BZ reaction were recently reported in ref

3. Theoretically,1 these coefficients are obtained by averaging
some scalar phase-dependent functionsD(φ) andA(φ) over the
period of oscillations. These quantities are given by:

where the vectoru0(φ) is a point on the stable limit cycle in
the phase space{u}, ∇uφ is the gradient of phase in the phase
space atu ) u0, D is the matrix of diffusion coefficients in the
original reaction-diffusion equation. The details of the deriva-
tions and discussion of the meaning of the above formula can
be found in ref 1. For our purpose it is important to note that
in the case of equal diffusion coefficients, which holds ap-
proximately for many chemical systems,D(φ) becomes a
constant. However, this is not the case forA(φ).
In this paper we present estimations of the dependence ofA

on the phaseφ. A(φ) is determined in such a way that its
substitution into eq 1 allows one to correctly reproduce a family
of traveling waves obtained in the numerical simulations of the
BZ reaction. The change of the shape of functionA(φ) with
the wavenumberk is studied. We also plot isophase lines and
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a distribution of the phase as a function of main parameters of
the BZ reaction: bromous acid and ferriin.

2. Results

We used a two-variable model of the BZ reaction7 with rate
constants estimated in ref 8 to simulate an oscillatory chemical
system

where

The rate constantski are:

To study spatiotemporal effects, we added diffusion terms to
eqs 3

whereF(x,z) andG(x,z) are the right-hand sides of eqs 3,F
denotes scaled spatial coordinates,∇F

2 is the Laplacian operator

with respect to the coordinatesF, andδ ) Dz/Dx is the ratio of
the diffusion coefficients, assumed to be unity here.
The model has been verified experimentally to adequately

simulate spatiotemporal phenomena in the real BZ reaction.3,6,8-10

The numerical values of the model parameters used in this work
were identical with those used in ref 3. This set of parameters
when used with eqs 3 and 4 was experimentally tested to be
suited for simulations of phase-wave and trigger-wave dynam-
ics.2,3,6

To reconstruct phase distributions, we simulated periodic
traveling waves of different wavenumbersk. For such waves
the dynamics of any point of the medium can be presented by
a closed loop (limit cycle) in the phase space. The limit cycles
at different values ofk are shown in Figure 1.
It is seen that there are only little deviations in the shape as

long ask remains small (curves 0, 1). However, starting from
curve 2, an increase ofk results in a marked shrinking of the
limit cycle (Figure 1).
The limit cycle corresponding to 0k (i.e. to bulk oscillations)

was calculated using eqs 3. It was calibrated in such a way
that for any point on this limit cycle a unique phase in the range
from 0 to 2π was assigned (see the description of the procedure
in ref 3). To estimate the phase for points that do not lie on
the limit cycle, the following assumption was used:11 the phase
at a pointP in the phase space was assumed to be equal to the
phase at a pointPc lying on the limit cycle, provided thatP f
Pc at t f ∞ when the system evolves according to the
diffusionless eqs 3. Such a definition provides a natural and
unambiguous algorithm for calculating the phase.
The phase distribution calculated in this way is shown in

Figure 2a. The isophase lines, i.e., lines connecting the points
with equal phases, are presented in Figure 2b. Notice that there
is a region where the isophase lines are condensed. The analysis
shows that this region coincides with the location of unstable
branch of the nullcline for the fast variable:{F(x,z) ) 0}.
Actually, near the nullclines a small deviation in the position
of a point results in a large deviation when the point approaches
the limit cycle; at the point of intersection of the nullclines (fixed
point) the phase is not defined at all, and this is a so-called
phaseless point.
The calculated distributionφ(x,z) allowed us to estimate the

dependence of the coefficients of the Burgers equation (eq 1)
using eq 2. For the case of equal diffusion coefficients,D(φ)
becomes a constant as expected;A(φ) proved to have a
complicated dependence onφ as presented in Figure 3a.A (φ)
has a two distinct maxima nearφ ) 0 and φ ) 1.2,
corresponding to the rise and drop of bromous acid, and a large
plateau for 1.5< φ < 5 corresponding to the gradual decrease
of ferriin.
In eq 2 it is assumed that the state points stay sufficiently

close to the limit cycle. To avoid this constraint, which is
necessary for traveling waves with a not too smallk, we
calculated the dependenceA(φ) directly from eq 1. For this
purpose we carried out computer simulations of a pulse
circulating in a ring in a way similar to that used for calculation
of the dispersion relation in ref 3. The calculated distributions
of speciesx(r,t) andz(r,t) were used to reconstruct the phase
distributionφ(r,t) at every pointr and momentt as described
above. Then, after estimating the appropriate derivatives and
substituting the data to eq 2, it was possible to estimateA(φ).
It is seen that fork < 30 rad/cm the shape ofA(φ) (Figure

3b) is similar to that estimated from analytical formula (Figure
3a). For largerk an additional negative spike nearφ ) 4.8 rad
occurs. The appearance of this spike is clearly seen in a plot
of the dependence ofA(φ,k) Figure 2c.

Figure 1. Dependence of the shape of the limit cycle on the
wavenumberk. The curves marked as 0-4 correspond tok ) 0, 20.8,
30.5, 40.8, and 54.2rad/cm, respectively.k ) 54.2 rad/cm is close to
the maximum possible in the medium.
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3. Discussion

In this paper we presented evaluations of the distribution of
the phase for a realistic model of a chemical system. We used
this distribution to estimate the dependence ofA(φ); surprisingly,
it proved to be a rather complicated function (Figure 3). The
particular shape of this function is important for short term
behavior.
Little change of the shape ofA(φ) with k for k < 30 rad/cm

says indicates in this range the Burgers equation (eq 1) is a

good model for the description of the dynamics for the both
short and long term behavior.
It should be emphasized that the range 0< k< 30 rad/cm is

a surprisingly wide range of wavenumbers, because, formally
speaking, the theory of phase dynamics is applicable for small
perturbations of the limit cycle that expected fork f 0.
It should be noted that a critical value ofk≈ 30 rad/cm was

recently found to occur while analyzing the dispersion relation.3

This was the point of inflation of the dispersion curve that is

Figure 2. Phase distribution (a) and isophase lines (b) on the plane “bromous acid”-“ferriin”. Limit cycle is shown by white dots. Yellow arrows
point to a place where isophase lines are condensed that corresponds to the unstable branch of the nullcline{F(x,z) ) 0}. (c) The coefficientA in
eq 1 as a function ofφ andk. Note thatA hardly depends onk for smallk, but for largek an additional pit occurs (marked with a blue arrow).φ
ranged from 0 to 2π rad; k ranged from 10 to 32 rad/cm.
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believed to separate phase-wave and trigger-wave branches of
the dispersion relation. According to that paper, the dynamics
in the system significantly changes while crossing the inflation
point. Thus, the observed change of the shape ofA(φ) for k≈
30 rad/cm can be associated with a transition from the phase-
wave to the trigger-wave dynamics.
In this paper we used the definitions of frequencyω and

wavenumberk as in ref 3, i.e. as derivatives of the phase
φ(x,t) on time and space. An obvious alternative definition of
these quantitatives isω ) 2π/T andk ) 2π/λ, whereT andλ
are the period and wavelength of a wave train. The later
definition is frequently used in the literature on wave dynamics
in the BZ reaction, but it requires “a wave train” to occur. The
other definition involves several subtle points as well: there

are regions where the phase distribution is steep, and there are
points of undetermined phase. However, the definition is more
universal; that is why it is used in this work.
A significant rise in the density of isophase lines near the

slow branch of the nullcline{F(x,z) ) 0} (Figure 2b) provides
an interesting method for an experimental analysis of oscillatory
systems. Actually, if the regions where isophase lines are dense
are plotted, it is possible to reconstruct partly the nullclines of
the system, which seems to provide a unique experimental
approach for a system for which there is no reliable model.
It should be noted that in ref 11 there was presented a

distribution of isophase lines for the FitzHugh-Nagumo (FHN)
model, which looks like that in Figure 2b. Similarity of the
isophase lines geometry in the BZ reaction and in the FHN
model, which is used in biology to simulate nerve and cardiac
pulses, emphasizes that the dynamics studied is of universal
nature.
This paper is devoted to the study of the dynamics of phase

waves in the BZ reaction. Such waves have longer wavelengths
in comparison with the well-studied trigger waves. However,
it is not realistic for the typical scale of phase waves to be dozens
of centimeters, but it can fall to less than 2 mm, as was
experimentally demonstrated in a recent study.6 In fact, by
varying the composition of the reaction (i.e. increasing the
concentration of sulfuric acid or of sodium bromate), the
wavelength can be made even shorter.
Finally, we would like to emphasize that in the analysis

presented above we did not rely on specific details of the BZ
reaction. Thus, we believe that the methods based on the
reconstruction of phase distribution can be applied to wide
spectrum of nonlinear systems.
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Figure 3. Dependence of the coefficientA in eq 1 onφ estimated
theoretically (a) and from computations (b). The curves in (b)
correspond to different values ofk: a black line fork ) 12.6, a gray
line for k ) 20.8 and a dashed line fork ) 30.5. Note that fork < 30
the shape ofA(φ) is similar to that estimated theoretically.
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